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Using a network model involving statistical mechanics we study the topological transition of complex
networks with evolving wiring structure. The evolution rule of our network model contains both a structuring
effect originated in a wiring decision metric �local clustering coefficient� and a randomizing effect due to
thermal fluctuation. Monte Carlo simulation results show a dramatic topological transition between nonclus-
tered networks and clustered networks in response to changes in the degree of randomness.
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I. INTRODUCTION

The pattern of connections in networked systems such as
computer networks, biological networks, and social networks
is a topic of great interest to researchers in a variety of fields.
High-level abstraction and modeling is an effective way of
analyzing the mechanism of evolution and predicting the be-
havior of such networks. Many network models have been
proposed for discussing why and how the connection pat-
terns emerge and what properties the networks have. Most of
these networks have no central control for the wiring-
configuration generation rules. Each vertex autonomously
makes its own decision about the wiring configuration and
the resulting topologies often contain a very complex struc-
ture.

Random graphs were first studied by Erdos and Renyi
�1–3�. Although their models are simple tools that reveal a
lot of interesting average properties, many real networks
such as World Wide Web �WWW� hyperlink networks and
social networks have different properties from those of ran-
dom graphs. Consequently, many other models have been
proposed over the years. For example, Watts and Strogatz
�4,5� proposed a simple model for producing small world
networks �6� that have a highly clustered topology yet a
small degree of separation between all vertices. Barabasi and
Albert �7� proposed the BA model, which contains two prop-
erties, network growth and preferential attachment, to ex-
plain why the degree distribution of WWW networks follows
a power-law distribution. These models help us understand
the basic properties of such networks and many other models
have been derived from them. For more extensive informa-
tion regarding recent work on the models of complex net-
works, readers should refer to �8–12�.

Most of these models locally define random process for
updating the network’s wiring configuration, and each vertex
is given a metric for making wiring decisions. The main
interest is to learn the topology or other important network
properties such as the clustering coefficient and the average
shortest path length of the networks generated through the
generation process.

However, it is also important to study the equilibrium
states that a system reaches after repetitions of local wiring
updates according to an evolution rule that contains both
structuring and randomizing effects in the wiring decision. In
particular, when vertices dynamically interact with each
other in making next wiring decisions, complex interaction
patterns of the wiring update decisions appear and cause a lot
of interesting phenomena similar to the phase transition ob-
served in Ising model or spin glasses �13�. In order to ana-
lyze the rich phenomena, it is important to construct a model
that formalizes such network-evolution process and observe
the equilibriums resulting from competition between struc-
turing and randomizing effects.

In this study, we devised a model involving statistical me-
chanics for studying the equilibrium states of the network
evolution where vertices keep updating the configuration of
the incoming edges by taking a clustering coefficient, one of
the most important measures of complex networks, as an
evolution metric. As we will show, our model uses the con-
cept of temperature to express the degree of randomness in
wiring decisions. We show that the transition between non-
clustered and clustered topologies is observed in response to
changes in the degree of randomness. We also discuss how
complex interaction patterns form by analyzing the results of
a damage-spreading simulation and by devising a percolation
expression applicable to our model.

II. MODEL DESCRIPTION

Suppose that a network contains N vertices, and each ver-
tex autonomously selects K different vertices as its “friends”
to ask for some information by creating directed edges. Our
goal is to provide a model for observing the temporal evolu-
tion of this network and, in particular, the resulting topologi-
cal structure of the network in its equilibrium states. To this
end, we define a network model and evolution rules as fol-
lows.

A. Definitions

1. State space

Throughout this paper, we consider the following set of
directed graphs � as the state space of the system:

*n-kami@ak.jp.nec.com
†ikeda.hideo@kobelco.com

PHYSICAL REVIEW E 79, 056112 �2009�

1539-3755/2009/79�5�/056112�8� ©2009 The American Physical Society056112-1

http://dx.doi.org/10.1103/PhysRevE.79.056112


� = �g = �V,E���V� = N, �E� = NK,�N,K � N�� . �1�

Here, �X� denotes the number of elements of set X. A con-
figuration g, which is an element of �, specifies a certain
wiring configuration, and it can also be mapped to an adja-
cency matrix A in a one-to-one manner. The entry aij of the
adjacency matrix A is defined by

aij = 1��i,j��E�, �2�

where 1�statement� is the indicator function that returns 1 when
statement is true and 0 otherwise. Note that we define a
direction of edges such that it represents information flow.
For example, creation of an edge e= �j , i��E represents that
vertex i makes a reference to vertex j.

2. Adjacent vertex sets

We also define Ri and Si ∀i�V as follows:

Ri = �j� ∀ j � V, j � i,�j,i� � E�, �Ri� = K , �3�

Si = �j� ∀ j � V, j � i,�i, j� � E�, �Si� � N − 1. �4�

Ri is a set of vertices whose outgoing edges are connected to
vertex i �vertices to which vertex i chooses to have a con-
nection�, while Si is a set of vertices whose incoming edges
are connected to vertex i �vertices which chose to connect to
vertex i� as shown in Fig. 1. The set Ri�Si denotes the set of
all adjacent vertices of vertex i, whereas Ri�Si denotes the
set of vertices having mutual references with vertex i.

3. Restrictions

Throughout the evolution, each vertex has a fixed number
of incoming edges �K edges�. Thereby the number of 1’s of
all columns of all possible adjacency matrices is strictly K in
our model. In addition, all vertices are allowed to directly
change only their incoming edges configuration. We also
prohibit self-reference and double reference �multiple edges
between the same pair of vertices�,

i � j ∀ �i, j� � E , �5�

e � e� ∀ e,e� � E . �6�

This means that the diagonal entries of all possible adjacency
matrices in the state space are 0 and other entries are either 0
or 1.

B. Evolution rules and equilibriums

The network evolves in such a way that each vertex keeps
being chosen among V in a round-robin manner and given a
chance for rewiring. When vertex i is chosen, it acts as fol-
lows:

Step 1—Vertex i randomly picks one vertex �a�Ri�
among the incoming adjacent vertices and a new vertex �b
�V \Ri� among all vertices minus the vertices in the set of
incoming adjacent vertices.

Step 2—It compares b to a according to a given metric
and replaces a with b with a certain probability.

This state transition corresponds to randomly selecting
a pair of 1 and 0 in column i of the adjacency matrix
and swapping them with a certain transition probability.
Repetition of this rewiring at each vertex is represented
by a series of state transitions in the state space,
g�t�→g�t+1�→g�t+2�→¯.

In order to get the transition probability from one state to
another, we take advantage of the statistical-mechanics ap-
proach �13� and define a real-valued function on �, the
Hamiltonian of the system H�g�, which is interpreted as an
energy of the system when in the configuration g.

In statistical mechanics, Gibbs’ measure, which is the
probability of the network having a configuration g after the
system has reached equilibrium, is given by

G�g,�� =
exp�− �H�g��

Z���
, �7�

where Z��� is the partition function given by

Z��� = �
g��

exp�− �H�g�� . �8�

According to the Metropolis method �14�, the state tran-
sition probability from the state g to the state h is given by

Pr�g → h� = min	1,
G�h�
G�g�
 = min�1,exp�− ��H�� , �9�

where �H is the Hamiltonian’s change from g to h.
Note that we assume that the system is subjected to an

infinite heat bath having a “temperature” T=1 /�. We can
interpret that the temperature plays a role in introducing ran-
domness in the wiring decision because the wiring decisions
become more random and insensitive to energy increases as
the temperature becomes high.

The choice of Hamiltonian determines the behavior of
each vertex and hence the equilibrium states. In this paper,
we focus on the Hamiltonian given by

H�g� = − �
i�V

Ci�g� , �10�

FIG. 1. Illustration of incoming and outgoing adjacent
vertices.
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Ci�g� =

�
j,k�Ri�Si,j�k

1��j,k��E�

�Ri � Si���Ri � Si� − 1�
, �11�

where Ci�g� is a clustering coefficient �4� of vertex i in graph
g that quantifies the ratio of the number of edges between its
adjacent vertices to the number of edges that could possibly
exist between them. Since the system with this Hamiltonian
prefers jumping to a state with lower energy and each vertex
tries to connect to a group of vertices strongly tied to each
other, the resulting network topology is prone to be clustered.

In this transition process, �H is determined locally be-
cause a clustering coefficient needs only information regard-
ing the connection pattern of a rewiring vertex and immedi-
ately adjacent vertices. When one vertex rewires, all vertices
that can contribute to �H are at most the rewiring vertex and
its adjacent vertices whose clustering coefficient changes. In-
tuitively, this is interpreted in such a way that a vertex can
change its adjacent vertices only when all adjacent vertices
as well as itself agree with the decision.

One of the intriguing properties of this model is that al-
though the wiring decision of each vertex is made on the
basis of local information, the decision could also indirectly
affect the wiring decisions of other vertices that are not nec-
essarily immediately adjacent to the vertex. The effect of one
wiring-configuration change could spread over the network
through a chain of reactions involving many vertices and
evoke complex interactions in wiring decisions among many
vertices in the whole network. Moreover the strength
�length� of the interaction changes with temperature.

III. TRANSITION BETWEEN NONCLUSTERED AND
HIGHLY CLUSTERED NETWORKS

In this section, we describe a Monte Carlo simulation of
the aforementioned model in order to observe its equilibrium
states. Following the evolution rules described in Sec. II, all
vertices were given a chance to rewire their incoming edges
in a round-robin manner and make a rewiring decision to a
randomly selected vertex with a transition probability given
by Eq. �9�.

All simulations started from a randomly and indepen-
dently generated random graph that contained a fixed num-
ber of vertices N and incoming degree K, and the simulation
steps are chosen to be large enough �more than 16 000 steps�
for the system to exhibit a long plateau in the average clus-
tering coefficient. Note that one simulation step is defined by
one “round” of turns given to all vertices for rewiring. Thus,
each vertex has in total more than 16 000 opportunities for
rewiring.

We used the random number generator of Kirkpatrick and
Stoll �15�, which has approximately a period of 2250 to en-
sure enough randomness against the scale of the simulations.

Figure 2 illustrates the average clustering coefficient of
the system with N=100, 200, 300, 400, 600, and 800 and
K=10 at a variety of temperatures ranging from 0.0001 to 1.
The average clustering coefficient for each simulation was
calculated by sampling ten different points well after the sys-
tem had reached a steady state. Moreover, to eliminate the

initial graph dependency, the points shown in Fig. 2 are the
average clustering coefficients taken over 15 different simu-
lations with different initial random graphs independently
generated for each simulation.

As we discussed, temperature in our model can be taken
as randomness in the wiring decision. As temperature goes
down, the decision becomes more and more deterministic
and hence the resulting topology is prone to be more clus-
tered. In the high-temperature limit, the network becomes a
random graph because the wiring decision is made in a to-
tally random fashion and all K 1’s in the ith column of the
corresponding adjacency matrix are placed randomly.
�Thereby, all 1’s in the adjacency matrix are equally distrib-
uted except for diagonal entries.� In the low-temperature
limit, the network has a highly clustered topology with low
energy. In particular, the network in the ground state contains
N / �K+1� isolated perfect subgraphs with K+1 vertices if N
is dividable by K+1 and the average clustering coefficient
takes on the maximum value, 1 �the clustering coefficient of
all vertices is exactly 1�. If N is not dividable by K+1, it is
comprised of highly clustered imperfect subgraphs. Interest-
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ingly, for all system size cases, there is a sudden jump in the
average clustering coefficient at a certain “critical” tempera-
ture Tc. A network with a larger N has a lower transition
temperature because the degree of freedom of the system
increases as N increases. Figure 3 illustrates how transition
temperature decreases as the system size N increases. We can
observe that the decrease in the transition temperature con-
spicuously becomes small as N becomes large. Note that the
system is “frozen” in one of the low-energy states at a low
temperature if the simulation steps are finite because once
the system falls into a deep “valley” of the potential curve,
the probability of transiting to other low-energy states by
jumping over potential barriers is extremely small and the
event practically never happens in a finite number of simu-
lation steps.

The average clustering coefficient stays low in the high-
temperature range above Tc, and this is a typical property of
random graphs. Figure 4 plots the relative frequency of out-
going degrees of the network with N=800 at T=1, 0.1, 0.06,
0.03, 0.015, and 0.01 ��Tc�. Compared to the Poisson dis-
tribution, very little difference is observed for all cases.

On the other hand, in the low-temperature range below Tc,
the networks are frozen in one of the low-energy states that
contain highly clustered subnetworks isolated or connected
to each other with a few edges. �Figure 5 illustrates one of
the typical clustered topologies observed in the case of T
=0.0001 for N=100.� Figures 6 and 7 show the average ef-
ficiencies of the network �17� and the ratios of the number of
disconnected vertex pairs to the number of all vertex pairs

�N�N−1��, respectively. These plots also show the discon-
tinuous changes at Tc between high average efficiency �low
ratio of disconnected vertex pairs� and low average effi-
ciency �high ratio of disconnected vertex pairs�, which indi-
cates that the topologies suddenly change between connected
graphs and disconnected graphs. All these results strongly
suggest that topologies observed in the high-temperature
range above Tc still have random graph properties and those
below Tc contain multiple mutually disconnected subclusters.
This jump implies a transition between a nonclustered net-
work topology and highly clustered network and we can take
the average clustering coefficient as the order parameter of
the system. In our model, high temperature causes high de-
gree of randomness in the wiring configuration, whereas low
temperature causes high average clustering coefficient of the
network. As the temperature drops, the randomness in the
wiring decision plays a less meaningful role and the impor-
tance of the clustering coefficient grows. The critical tem-
perature is where this balance dramatically changes and the
transition between nonclustered and highly clustered net-
works appears. In Sec. IV, we investigate how the interaction
between vertices grows above the critical temperature.
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=100, K=10, T=0.0001�. The graph is drawn by using PAJEK �16�.
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IV. HIDDEN TOPOLOGICAL STRUCTURE ABOVE
THE CRITICAL POINT

The results in Sec. III imply that interactions in the wiring
decision among many vertices grow above the critical point
as the temperature decreases. In this section, we focus on the
details of the topological structure inducing a collective re-
action of the system. Such details cannot be analyzed simply
with the average clustering coefficient. To this end, we take
an approach commonly used in the literature on Ising models
and spin glasses: damage spreading and percolation.

A. Damage spreading

Damage spreading �18,19� is a tool originally developed
by Kauffman �18� to study biologically motivated dynamical
systems, and it appears in the literature on Ising models and
spin glasses as a way to observe the system dynamics. Dam-
age spreading investigates the time evolution of slightly dif-
ferent copies of a dynamical system, which are subjected to
the same thermal noise. Knowledge of whether or not a small
perturbation �damage to the configuration� added to one of
the two replicas diverges or stays at the same level �even
disappears� can help us to investigate the interactions be-
tween vertices.

Figure 8 plots damage spreading for the same simulation
set of networks shown in Fig. 2. “Damage” here is defined as
a slight change in the wiring configuration of replica 2,
which is a copy of the original network �replica 1�. Ran-
domly chosen and rewired are 0.5% of the edges of replica 2
so that their tail vertices are on randomly chosen. �For ex-
ample, a network with N=100 and K=10 has 5 edges re-
wired out of 1000 edges.� Note that this operation preserves
the incoming degree of all vertices. The damage is added to
replica 2 in the steady state, and we compare the two replicas
after leaving them to evolve in more than 8000 subsequent
simulation steps. Damage spreading is defined as the ratio of
the number of different edges in the edge configuration be-
tween replica 1 and replica 2 to the total number of edges
�NK�. The quantity D is calculated by comparing all edges of
the two replicas and counting one if one edge of replica 2
consists of a different pair of vertices from the corresponding
edge of replica 1:

D =
�number of different edges�

�total number of edges�

=

�
i,j

�aij
�replica 1� − aij

�replica 2��

2NK
. �12�

Here, aij
�replica k� denotes the �i , j� entry of the adjacency ma-

trix of replica k �k=1,2�, and the summation is taken over all
i and j.

Figure 8 shows that damage grows as temperature de-
creases from a high temperature. It becomes almost 1, the
maximum value, just before it reaches the critical point. Be-
low the critical temperature, it rapidly decreases and be-
comes confined to a certain region. A large damage value
indicates that the correlation length of the system is long,
which means the wiring-configuration decision of one vertex
can affect the decision of many other vertices in the network.
This interaction between vertices is very complex because a
variety of reaction chains �loops� would be involved in the
wiring decisions of many vertices. For example, if one vertex
changes its wiring configuration, it affects the decisions of
the immediately adjacent vertices, which then affect their
adjacent vertices, and so on. This chain reaction spreads over
the network and possibly the effect of rewiring of one vertex
could return to itself if the reaction chain has loops. Thus, the
growth in damage implies that a complex structure is being
organized and its value gives us a measure of how large the
interaction region is relative to the size of the network.

These simulation results suggest the existence of a hidden
complex structure regarding interaction chains stretching
over many vertices above the critical temperature. In Sec.
IV B, as a way of analyzing such structures, we devise a
percolation expression applicable to our network model.

B. Percolation expression

1. Concept of percolation expression

Kastelayn and Fourtuin introduced the idea of percolation
for analyzing the Ising spin model. Since then, percolation
models have been studied in a variety of research areas. They
are especially useful as a tool for understanding critical phe-
nomena in complex statistical systems including spin glass
models �20–25�.

A percolation model is a system model defined by a set of
local connections. In the Ising spin model, for example, an
occupied bond is placed with a certain probability if two
mutually adjacent vertices have the same states �spin orien-
tations� and a vacant bond is placed otherwise. After execut-
ing this operation for all pairs of adjacent vertices �edges on
a lattice grid�, we get a percolation graph. Subgraphs com-
prised of connected vertices in the percolation graph are re-
ferred to as “percolation clusters.” As we increase the prob-
ability of putting occupied bonds, a well-known
phenomenon �called the percolation transition� whereby lo-
cal percolation clusters suddenly combine into one macro-
cluster, emerges at a critical probability.

Since Kastelayn and Fourtuin’s percolation expression is
a strict mathematical transformation of the partition function,
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we can use it as a different way of expressing the system
instead of expressing it with spin orientation patterns. The
percolation transition of the Ising model and the phase tran-
sition observed in the spin expression take place at the ex-
actly same point, and we can take the distribution of perco-
lation clusters as that of effective interaction regions of the
system.

2. Percolation expression

In order to develop the percolation expression for our net-
work model, we rewrite the Hamiltonian of our model in
terms of pairs of vertices �i , j�,

H�g� = − �
i�V

Ci�g� = − �
i,j

aij�g�wij�g� , �13�

where aij�g� is the entry of the adjacency matrix A�g�. wij�g�,
a coefficient that represents the contribution of the each pair
�i , j� to the Hamiltonian, is given by

wij�g� = �
k�Uij�g�

1

�Rk � Sk���Rk � Sk� − 1�
, �14�

where Uij�g�= �Ri�Si�� �Rj �Sj�.
Using wij�g�, we can express the partition function Z���

as follows:

Z��� = �
g��

exp�− �H�g�� = �
g��

exp	��
i,j

aij�g�wij�g�

= �

g��
�
i,j

e�aij�g�wij�g�. �15�

The exponential function in the partition function can be
transformed as follows:

e�aij�g�wij�g� = e�wij�g��e−�wij�g� + aij�g��1 − e−�wij�g��� .

�16�

We substitute it to the partition function

Z��� = �
g��

�
i,j

e�wij�g��e−�wij�g� + aij�g��1 − e−�wij�g���

= �
g��

�
i,j

e�wij�g��qij�g,�� + aij�g�pij�g,���

= �
g��

�
i,j

e�wij�g��
i,j

�qij�g,�� + aij�g�pij�g,��� , �17�

where

pij�g,�� = 1 − e−�wij�g�,

qij�g,�� = 1 − pij�g,�� . �18�

We can interpret the term

�
i,j

�qij�g,�� + aij�g�pij�g,��� �19�

as a set of probability events where, for all �i , j� in a given
graph g,

�1� if aij�g�=1, put an occupied bond with probability
pij�g ,�� and put a vacant bond with probability qij�g ,�� on
�i , j�; and

�2� if aij�g�=0, put a vacant bond with probability of 1 on
�i , j�.

Then we get a percolation graph for g.
Analogously as with the percolation expression of the

Ising model, we can interpret the percolation expression of
our model as a graph comprised of edges representing the
existence of an effective interaction between two vertices by
eliminating connections created only because of thermal
noise. Thereby, the percolation clusters represent the effec-
tive interaction regions.

3. Simulation results

Following the operations above, we generated percolation
graphs from network topologies resulting from the network
evolutions discussed in Secs. III and IV.

Figure 9 illustrate the MCSs and BDs of the percolation
graphs. Here, the maximum percolation cluster size is de-
fined as the ratio of the number of vertices in the maximum
percolation cluster to N, the total number of vertices in the
system, and bond density is the ratio of the number of placed
effective bonds to the total number of edges. To enable com-
parison with the results in Secs. III and IV, we plot the results
from Figs. 2, 8, and 9 for the network with N=400 and K
=10 in Fig. 10.

From these figures, we can observe two distinct tempera-
tures in terms of the states of the system. The first one is
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observed by a sharp increase in MCS in a relatively high
temperature range �around T�0.05�. We call this point as a
percolation transition temperature Tp. Above Tp, both MCS
and BD stay low and below Tp on the other hand, MCS
reaches almost up to 1 and BD still stays low and shows
moderate increase.

The second one is observed by a sudden decrease in MCS
and a sudden increase in BD. We can see it at around T
�0.01. This point coincides with Tc at which the network
takes a clustered topology and D plummets. Below Tc, MCS
stays relatively small, in contrast to BD and CC, which take
large values.

We interpret that MCS indicates the dominant interaction
region in the system because it represents the domain con-
nected by effective bonds, which are placed on “meaningful”
edges whose contribution to the Hamiltonian is large. In the
high-temperature region, MCS and BD stay low because
most of the edges are randomly created and a rewiring deci-
sion of one vertex does not affect other vertices’ decision for
next rewiring. �Thus the graph is pretty sparse and random,
and the correlation length is short.� As the temperature de-
creases, BD, which reflects the number of deterministically
created edges, gradually increases and MCS suddenly jumps
at Tp. Considering that the original graphs in this temperature
region show random graph properties, we can take Tp as the
transition temperature at which most of the vertices are sud-
denly connected to each other with meaningful edges in the
same way as observed in random graphs.

In the intermediate-temperature region �Tc�T�Tp�, high
values of MCS and D indicate that the interaction region is
stretched over the whole network. Note that D also starts
increasing around Tp, and MCS and D have strong positive
correlation. Percolation analysis is basically a static method
used to analyze the interaction region in terms of contribu-
tions to the Hamiltonian in contrast to damage spreading, a
dynamic method that depends on simulation dynamics. Both
different ways indicate that Tp is the boundary at which the
interaction region starts spreading. As the temperature ap-
proaches Tc, BD shows an accelerated increase even though
the average clustering coefficient still stays low. Since BD
indicates the ratio of deterministically placed �meaningful�
edges to all edges, this result implies that once a certain

number of edges are deterministically placed, possible
wiring-configuration patterns are suddenly limited and the
topological structure �clustered graph� rapidly grows through
the interaction. Then, as we previously discussed in Sec. III,
topologies suddenly transit from random graphs to highly
clustered graphs at Tc. In that sense, percolation graph re-
veals a “hidden” yet growing structure by “filtering” the
original graph and eliminating thermally fluctuating edges.
This sudden growth of BD implies that a positive feedback
effect through complex reaction chains among vertices ap-
pears in such a way that the structure generated by one
meaningful wiring attracts previously meaningless edges
�connections due to thermal fluctuation� and induces more
structure and so forth just above Tc.

Finally, below Tc, the network becomes divided into sub-
clusters, MCS is bounded by the maximum size of the sub-
clusters, and D is confined to within the clusters. Moreover,
BD reaches almost 1, which means almost all edges become
meaningful because of the transition to a highly clustered
structure, and percolation graphs become identical to the
original ones.

V. DISCUSSION AND CONCLUSION

We developed a network model similar to the Ising model
that involves statistical mechanics for studying the equilib-
rium states of network evolutions where vertices autono-
mously keep changing their wiring configuration according
to the locally defined metric. Taking the clustering coefficient
as a metric for structuring networks, we analyzed the tempo-
ral evolution and the network topology in the equilibrium
states by performing Monte Carlo simulations.

Our simulation results showed the transition temperature
at which a sudden jump in the average clustering coefficient
of the system is observed. The simulation results of other
network properties such as average efficiency and the num-
ber of disconnected vertex pairs also indicate that the sudden
topological transition between random graphs and highly
clustered graphs happens at this temperature.

In order to see the details of how this transition happens,
we performed damage spreading and percolation analysis to
observe the interaction region among vertices. The damage-
spreading simulation told us that interactions between verti-
ces stretch over the whole network and two slightly different
replicas take totally different trajectories in a phase space
slightly above Tc.

Percolation expression applicable to our model observed
two distinct temperatures Tp and Tc in the maximum cluster
size of the percolation graph, which indicates an interaction
region in the network, and bond density, which indicates the
ratio of effective �deterministically placed� edges. The maxi-
mum cluster size jumps at Tp and shows a strong positive
correlation with damage spreading. The sudden increase in
bond density coincides with the transition between a non-
clustered topology and a highly clustered topology at Tc.

All these results support the idea that some structure
�complex interactions between vertices� that cannot be re-
vealed by the average clustering coefficient grows above the
critical point. Since the bond density indicates the ratio of
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FIG. 10. Comparison between maximum cluster sizes, bond
densities, and simulation results in Figs. 2, 8, and 9 for the network
with N=400 and K=10.
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deterministically placed �meaningful� edges to the total
edges, this result implies that once a certain number of edges
are deterministically placed and create a certain structure,
most of the edges suddenly become meaningful and the to-
pological structure �clustered graph� rapidly grows through
the interaction. In that sense, percolation graph reveals a hid-
den yet growing structure by filtering the original graph and
eliminating thermally fluctuating edges. This sudden growth
of BD implies that a positive feedback effect through com-
plex reaction chains among vertices appears in such a way
that the structure generated by one meaningful wiring at-
tracts previously meaningless edges �connections due to ther-
mal fluctuation� and induces more structure and so forth just
above Tc.

This paper mainly discussed the transition by formalizing
a model of networks with evolving wiring structure. How-
ever, there are still lots left to be studied. For future work,
more extensive analysis �for example, finite-size scaling� is
necessary to understand the behavior of the system, in par-

ticular, at around the distinct temperatures. An analytical
derivation should be also developed.

Moreover, we can extend the model in various ways by
introducing protocols for wiring operations to model appli-
cations in real networks. For instance, vertices might be al-
lowed to “reject” being connected to other vertices. The
weights of edges should be considered if we want to differ-
entiate the edges’ importance. Furthermore, by taking into
account physical parameters such as available bandwidth and
traffic demand between vertices, for example, our model
could be applied to more realistic applications. We believe
that our model is a step toward many fruitful research topics.
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